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Abstract. Entanglement witnesses provide an efficient means of determining the level of entanglement
of a system using the minimum number of measurements. Here we demonstrate the observation of two-
dimensional entanglement witnesses in the high-dimensional basis of orbital angular momentum (OAM).
In this case, the number of potentially entangled subspaces scales as d(d − 1)/2, where d is the dimension
of the space. The choice of OAM as a basis is relevant as each subspace is not necessarily maximally
entangled, thus providing the necessary state for certain tests of nonlocality. The expectation value of the
witness gives an estimate of the state of each two-dimensional subspace belonging to the d-dimensional
Hilbert space. These measurements demonstrate the degree of entanglement and therefore the suitability
of the resulting subspaces for quantum information applications.

1 Introduction

Entanglement is a quantum mechanical phenomenon that
results in non-local correlations that are stronger than
any encountered in classical physics [1]. Due to this prop-
erty, entanglement is extremely useful as a tool for quan-
tum information protocols, such as quantum key distribu-
tion [2,3], quantum teleportation [4–6], and fundamental
tests of quantum mechanics [7–9]. All of these applica-
tions rely on preserving the nature of the quantum state;
however, a problem arises when the state interacts with
its environment and the enhancement provided by quan-
tum mechanics is lost. By characterising the state and
modelling its interaction with the environment, we learn
how best to take advantage of the enhancement provided
by quantum physics. It is thus important to determine
exactly the level of entanglement of a system in order
to determine its suitability for such quantum information
applications.

Quantum tomography is one approach to determine
the exact density matrix of a quantum state [10–16]; how-
ever, tomography requires a large number of measure-
ments, particularly for high-dimensional systems [16]. It is
often not necessary to have the complete knowledge of the
state that tomography provides. One alternative approach
is the method of an entanglement witness [17–21], which
has been experimentally realised in two dimensions [22]
and in multipartite systems [23]. An entanglement wit-
ness does not determine the full state as in tomography,
but it requires far fewer measurements to determine the
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degree of entanglement. With only six measurements in a
two-dimensional state space, an entanglement witness rep-
resents the fewest possible number of measurements that
establishes whether or not the state is entangled.

In this paper, we demonstrate the first observation of
entanglement witnesses for photons entangled in their or-
bital angular momentum (OAM). As the state space is
multi-dimensional, there are many two-dimensional sub-
spaces in which to observe entanglement. We use entan-
glement witnesses to test for entanglement in all possible
two-dimensional subspaces belonging to a representative
high-dimensional space of dimension d = 41.

2 Theory

During parametric downconversion, two photons are pro-
duced that possess equal and opposite OAMs and that are
entangled in the OAM basis. The two-photon state is then

|Ψ〉 =
∞∑

�=−∞
c�|�〉A ⊗ | − �〉B, (1)

where |c�|2 denotes the probability that photon A is mea-
sured to have OAM �� and photon B is measured to have
OAM −��.

Considering a state confined to a two-dimensional sub-
space, we obtain the state

|Ψ〉 =
1√|c�1 |2 + |c�2 |2

(c�1 |�1,−�1〉 + c�2 |�2,−�2〉), (2)
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Fig. 1. (Color online) Schematic representation of an optimal
entanglement witness. The state ρ is entangled and is separated
from the set of separable states by both the entanglement wit-
nesses W and Wopt. The optimal witness Wopt is tangent to
the set of separable states.

where we use |a, b〉 to denote |a〉A ⊗ |b〉B. Letting ε =
c�2/c�1 , we obtain the nonmaximally entangled state

|Ψε〉 =
1√

1 + |ε|2 (|�1,−�1〉 + ε|�2,−�2〉) . (3)

Here �1 and �2 can take any value in the range −[d/2]
to [d/2] for the dimension d in which the measurement is
taken, where [x] is the integer part of x. When ε is equal
to zero, the state is separable; when ε is equal to unity,
the state is maximally entangled. The density matrix for
this state is

ρε =
1

1 + |ε|2

⎛

⎜⎝

0 0 0 0
0 1 ε∗ 0
0 ε |ε|2 0
0 0 0 0

⎞

⎟⎠ , (4)

where we use the basis vectors |�1,−�2〉, |�1,−�1〉,
|�2,−�2〉, and |�2,−�1〉.

An entanglement witness W is an operator that in-
dicates whether or not a particular state is entangled.
A state ρent is entangled if and only if Tr(Wρent) < 0,
while Tr(Wρsep) ≥ 0 for any separable state ρsep [24].
A visualisation of the role of an entanglement witness is
shown in Figure 1.

While many entanglement witnesses may be appropri-
ate for a certain entangled state, one particular type is an
optimal entanglement witness. An optimal entanglement
witness Wopt is one for which there is no other witness
that can detect all states detected by Wopt [17]. In other
words, Wopt is tangent to the set of separable states S.

There are several methods of constructing entangle-
ment witnesses [17,25,26]. In this work, we use a standard
optimal entanglement witness for a state ρ with nonpos-
itive partial transpose. The general form of the optimal
entanglement witness is

W = (|η〉〈η|)TB , (5)

where XTB denotes the partial transpose of X on the
Hilbert space belonging to photon B, and |η〉 denotes the
eigenvector that corresponds to the minimum eigenvalue
of ρTB .

For the specific case of the density matrix ρε in equa-
tion (4) where ε is real and positive, the eigenvector cor-
responding to the minimum eigenvalue of ρε

TB is

|η〉 =
1√
2

(|�2,−�1〉 − |�1,−�2〉) . (6)

Using equation (5), we obtain for the state (4) the follow-
ing entanglement witness:

W =
1
2

⎛

⎜⎝

1 0 0 0
0 0 −1 0
0 −1 0 0
0 0 0 1

⎞

⎟⎠ . (7)

This entanglement witness is the same irrespective of the
level of entanglement present, i.e. regardless of the value
of ε.

To measure the entanglement witness, we can decom-
pose the operator into its constituent local measurements.
A two-dimensional operator in the OAM basis can be de-
scribed by the following decomposition [18]:

W = α2|z+
1 z−2 〉〈z+

1 z−2 | + β2|z+
2 z−1 〉〈z+

2 z−1 |
+ αβ(|x+

Ax+
B〉〈x+

Ax+
B | + |x−

Ax−
B〉〈x−

Ax−
B |

− |y+
Ay−

B〉〈y+
Ay−

B | − |y−
Ay+

B〉〈y−
Ay+

B |), (8)

where |z±1 〉 = |±�1〉, |z±2 〉 = |±�2〉, |x±
A〉 = 1√

2
(|�1〉 ± |�2〉),

|x±
B〉 = 1√

2
(| − �1〉 ± | − �2〉), |y±

A〉 = 1√
2

(|�1〉 ± i|�2〉), and

|y±
B〉 = 1√

2
(| − �1〉 ± i| − �2〉). The choice of α = 1/

√
2

and β = −1/
√

2 corresponds to the decomposition of the
particular witness of equation (7). The resulting decom-
position contains six terms, thus requiring six direct mea-
surements to establish the level of entanglement of any
two-dimensional subspace.

Since the number of two-dimensional subspaces in any
d-dimensional system is the binomial coefficient

(
d
2

)
, the

total number of measurements required to determine the
number of entangled subspaces within such a system is

N = 6
(

d

2

)
= 6

d!
2!(d − 2)!

= 3d(d − 1). (9)

For d = 41, this requires only N = 4290, which takes ap-
proximately 24 h for a 20 s integration time. For compari-
son, tomography for the entire d = 41 space would require
N = d4 − 1 = 2 825 760, which would take approximately
two years for the same integration time [16].

3 Experiment

We use a frequency-tripled Nd:YAG laser at 355 nm to
pump a 3-mm-long type I BBO crystal; see Figure 2.
This parametric downconversion process generates pho-
ton pairs entangled in the transverse degree of freedom,
as in equation (1). We use spatial light modulators (SLMs)
coupled to single-mode fibres to make projective mea-
surements of the quantum state of each of these pho-
tons. The SLM converts the desired measurement state to
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Fig. 2. (Color online) Experimental setup. L1 = 300 mm,
L2 = 750 mm, L3 = 1000 mm, L4 = 3.2 mm, SLM = spa-
tial light modulator, NPBS = non-polarising beam splitter,
SF = 710 ± 5 nm spectral filter, SMF = single-mode fiber.

Fig. 3. (Color online) Expectation value of the entanglement
witness of equation (7). The intensity axis indicates the ex-
pectation value resulting from the subspace of the form (3),
where |�1,−�1〉 is the state indicated on the horizontal axis and
|�2,−�2〉 is the state indicated on the vertical axis. Subspaces
with �1 = 0 or �2 = 0 are outlined in yellow. The subspaces
above the black line are redundant and thus not shown.

the fundamental state by displaying a computer-generated
hologram to modify the phase, thus creating an effective
means of mode selection. The detection is done using two
avalanche photo detectors (APDs) connected to a coinci-
dence counting card with resolution of 25 ns. The coinci-
dence counts are converted into probabilities by dividing
the coincidences for a given subspace by the sum of the
counts measured in that subspace.

4 Results and discussion

We have obtained the expectation value of the entangle-
ment witness for all two-dimensional subspaces within a
d = 41 dimension state space. As shown in Figure 3, this
produces for each subspace a value that lies in the range
−0.5 to 0.5. Any non-negative value indicates a separable
subspace, while the magnitude of a negative result indi-
cates how entangled that subspace is. The lowest values,
i.e. the most entangled subspaces, are found in subspaces
with low �1 and �2 (which have high signal-to-noise ra-
tio) and along the line where �1 = −�2 (which are the
maximally entangled states).
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Fig. 4. (Color online) (a) The experimental expectation values
of the entanglement witness on the states of equation (12), with
�2 shown on the horizontal axis. (b) The level of entanglement
ε calculated from the expectation values.

However, the normalisation method outlined above re-
sults in falsely low values for some states with high �.
These are considered to be outliers, which occur because
of the normalisation within the subspace. At very high �,
there is very low signal, and thus any coincidences that
occur due to noise will be normalised to a high prob-
ability, resulting in the illusory indication of an entan-
gled subspace. This phenomenon begins to occur where
|�1| = |�2| > 12, as seen in Figure 3.

In the following section, we show how the expectation
value of the witness gives an estimate of the state of each
two-dimensional subspace. This general result allows us to
characterise the degree of entanglement in our particular
system.

For the case where c�2 and c�1 are real-valued, as in
this experiment, we can determine the expectation value
of the entanglement witness for any subspace described by
equation (3). Using equations (4) and (7), one can calcu-
late the expectation value as

Tr(ρεW ) = 〈W 〉 = − ε

1 + ε2
. (10)

Solving for ε, we find

ε =
c�2

c�1

=

√
1 − 4〈W 〉2 − 1

2〈W 〉 . (11)

Using this result, we can determine the approximate value
of ε and therefore the level of entanglement of a subspace.

The data in the vertical yellow-outlined box in Figure 3
is shown in Figure 4a. These values correspond to the
states

|Ψ〉 =
1√

1 + ε2
(|0, 0〉 + ε|�2,−�2〉) , (12)
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Fig. 5. (Color online) The number of entangled subspaces (cir-
cles) and total subspaces (squares) for odd dimensions.

that is, states for which �1 = 0. Thus the degree of entan-
glement ε is simply c�2/c0. Since c0 is equal to unity, this
reduces to simply c�2 .

The calculated degree of entanglement ε = c�2 for each
of these states is shown in Figure 4b. As expected, the de-
gree of entanglement ε increases as �2 decreases, which
means that lower-dimensional subspaces are more entan-
gled than higher-dimensional subspaces. This is known to
be the case based on previous investigations of the spi-
ral bandwidth, which is the range of � over which |c�|2 is
nonzero [27–29].

The experimentally measured value of the entangle-
ment witness depends on both the generated state and our
ability to detect it. The projective measurements that are
key to this experiment use computer-generated holograms
that have symmetries that change according to their con-
stituent modes. A consequence is that our detection ca-
pabilities include a sensitivity to modal dependent align-
ment errors, which can introduce crosstalk for particular
measurements. Further investigation may be required to
separate the interplay between the contributions of the
generated state and modal detection capabilities of the
projective measurements.

Taking the number of subspaces with negative expec-
tation value, we can obtain an estimate of how many en-
tangled subspaces there are. The number of entangled sub-
spaces is shown in Figure 5, along with the total number of
subspaces in each dimension. The two curves are approxi-
mately the same until d ≈ 25, or � ≈ ±12. Thus beginning
at |�| = 12, some subspaces are not entangled.

5 Conclusion

We have demonstrated the use of entanglement witnesses
for two-dimensional subspaces of photons entangled in a
high-dimensional OAM basis. We have used this data to
determine the degree of entanglement of these subspaces
and thus their suitability for use in quantum information
science. This result represents the first measurement of
entanglement for high-dimensional OAM systems with the
minimum number of measurements. This is an important
step towards the use of these states in quantum protocols,
where it is often necessary to efficiently test the degree of
entanglement.

This work was supported by the Canada Excellence Research
Chairs (CERC) Program.

References

1. M.D. Reid, P.D. Drummond, W.P. Bowen, E.G.
Cavalcanti, P.K. Lam, H.A. Bachor, U.L. Andersen, G.
Leuchs, Rev. Mod. Phys. 81, 1727 (2009)

2. A.K. Ekert, Phys. Rev. Lett. 67, 661 (1991)
3. N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Rev. Mod.

Phys. 74, 145 (2002)
4. C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres,
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